Meine Antwort gefiel dann weniger, sie hörte sich nämlich ziemlich opportunistisch an: "Es kommt darauf an...".
Also zu den Details: Wenn man davon ausgeht, dass mit Regression die simple Anpassung einer Geraden an die Messpunkte gemeint ist, dann ist die Antwort genau im Sinne des Fragenstellers - also sinnlos sich weiter anzustrengen, die Regression wird einfach abgeblasen.
Manche Zeitgenossen neigen nun dazu (und dazu gehört meine Wenigkeit), sich Gegenargumente zurecht zu legen und womöglich Beispiele zu finden, die eine verallgemeinerte Ansicht widerlegen können; und erst wenn sich auch nach langem und angestrengtem Grübeln kein Gegenbeispiel finden lässt, geht man davon aus, dass "es keinen Grund zur Ablehnung dieser Ansicht gibt" (wem diese Formulierung bekannt vorkommt, der hat schon mal einen Stein im Brett des Statistikers).
Im speziellen Fall ist allerdings das Gegenbeispiel dann auch schnell gefunden. Fasst man nämlich ins Auge, dass mit Regression z.B. auch ein Polynom n-ten Grades an gegebene Daten angepasst werden kann, dann sieht die Situation schon ganz anders aus. Die folgende Abbildung zeigt ein klassisches Beispiel. Der Korrelationskoeffizient für diese Daten ist praktisch null (genau genommen 0.08, was sich aber nicht signifikant von null unterscheidet), und es lässt sich dennoch eine wunderbare Regression berechnen (nämlich eine parabolische, siehe die rote Kurve).
Die Erklärung für das eigentümliche Verhalten - keine Korrelation aber dennoch eine wunderbare Regression - liegt in der simplen Tatsache, dass der Pearson'sche Korrelationskoeffizient einen geradlinigen Zusammenhang voraussetzt.
...also es kommt halt darauf an (sagte ich ja ;-).
Keine Kommentare:
Kommentar veröffentlichen