Mittwoch, 27. November 2013

Ausreißertests bei der Regression

Momentan bin ich ziemlich eingedeckt mit Korrekturarbeiten einer Lehrveranstaltung zur Biostatistik. Das ist zwar insgesamt eine sehr nervtötende Arbeit, liefert aber dennoch immer wieder nützliche Hinweise, wo Lernende mit einem bestimmten Stoffgebiet Probleme haben. So liefert die Korrekturzeit für mich immer auch Anregungen, bestimmte Aspekte nochmals intensiver oder aus einem anderem Blickwinkel darzustellen.

Diesmal scheint die Regression und in diesem Zusammenhang der Umgang mit Ausreißern ein schwarzes Loch aufgerissen zu haben, das dringend gestopft gehört (im Gegensatz zu schwarzen Löchern irgendwo im Universum, entsteht beim Auffüllen von schwarzen Löchern in den eigenen Grundkenntnissen keine Strahlung, weshalb man beim Lernen nicht leuchtet ;-)

Genug gequatscht, was ist das Thema? Nun das lässt sich am besten durch ein paar Fragen zusammenfassen:

  1. Soll man die Regressionsvariablen auf Ausreißer überprüfen?
  2. Soll man die Residuen auf Ausreißer überprüfen?
  3. Kann es sein, dass man in den Residuen einen Ausreißer sieht, diesen aber mit einem Test nicht findet?

Antwort zu Frage 1: NEIN!!!

Vielleicht erscheint Ihnen die Frage unsinnig (nach dem Motto: "wie kommt der Lohninger auf diese blöde Idee?"). Wenn das so ist, dann überspringen Sie die folgenden Zeilen und lesen weiter bei der Antwort zur Frage 2.....

Für den Rest des werten Publikums hier eine ausführliche Antwort: Nun, die Regressionsvariablen einzeln auf Ausreißer zu überprüfen, ist deshalb sinnlos, weil es bei der Regression ja darum geht, den Zusammenhang zwischen zwei Variablen zu modellieren, und da macht die Überprüfung der Einzelvariablen wenig (keinen) Sinn. Ein Beispiel soll dies zeigen:

Im linken Diagramm (y1 aufgetragen gegen x1) sieht man einen klassischen Zusammenhang, der sich mit simpler parabolischer Regression einfach modellieren lässt; im rechten Diagramm (y2 gegen x2) gibt es hingegen ganz offensichtlich einen Ausreißer, der abseits der restlichen Daten liegt (und abseits des eigentlichen Zusammenhangs).

Führt man nun einen Ausreißertest (z.B. den Dean-Dixon-Test) aller Einzelvariablen durch, so findet man nur für die Variable y1 einen Ausreißer, nämlich den Punkt P1 - was natürlich im Licht der Regression Blödsinn ist, da gerade dieser Wert im Zusammenhang mit x1 seine Berechtigung hat und schön brav in der Nähe der Regressionskurve liegt. Andererseits ist der Wert P2 im rechten Diagram mit Sicherheit ein Ausreißer, wird aber beim Test der Einzelvariablen nicht gefunden, da die jeweiligen Koordinaten ja innerhalb der Verteilung der Koordinaten der anderen Punkte liegen.

Einzig richtige Schlussfolgerung aus dem Experiment: Hände weg von Ausreißertests der Einzelvariablen!! Das heißt aber nicht, dass Ausreißer nicht massive Probleme bei der Regression machen können.

Soweit die erste Teilantwort auf Frage 1, die weiteren Antworten folgen in den nächsten Tagen (so bald ich wieder Luft habe und die Arbeiten aus der Biostatistik-Lehrveranstaltung fertig korrigiert sind).

Keine Kommentare:

Kommentar posten